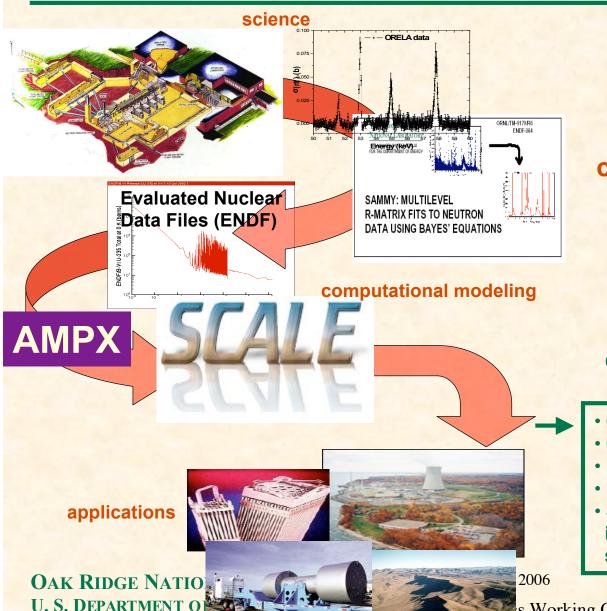
ORNL Tools and Capabilities for Analysis of the Liquid-Salt VHTR

Kevin Clarno

Joint AFCI/Gen-IV Physics Working Group January 23-24, 2006 Salt Lake City, UT

clarnokt@ornl.gov

Reactor Analysis Group
Nuclear Science & Technology Division



Outline

- ➤ The SCALE Code System
 - → Description and recent developments
- > The Liquid Salt-cooled VHTR Challenges
 - → Basic Design of the System Thank you Jim.
 - → Primary Issues and Challenges
- Results from Salt Coolant Studies
- Results from 3-D Neutron Transport Analyses
- Conclusions
 - → Applicability of ORNL Tools to AFCI/Gen-IV Analyses
 - **→** Recommended improvements for greater applicability

SCALE @ ORNL: Science to Applications

Interface science
(the basic physics of cross-section measurements),
computational modeling
(SCALE),
and applications
expertise to support
evaluation and resolution of nuclear engineering and safety issues.

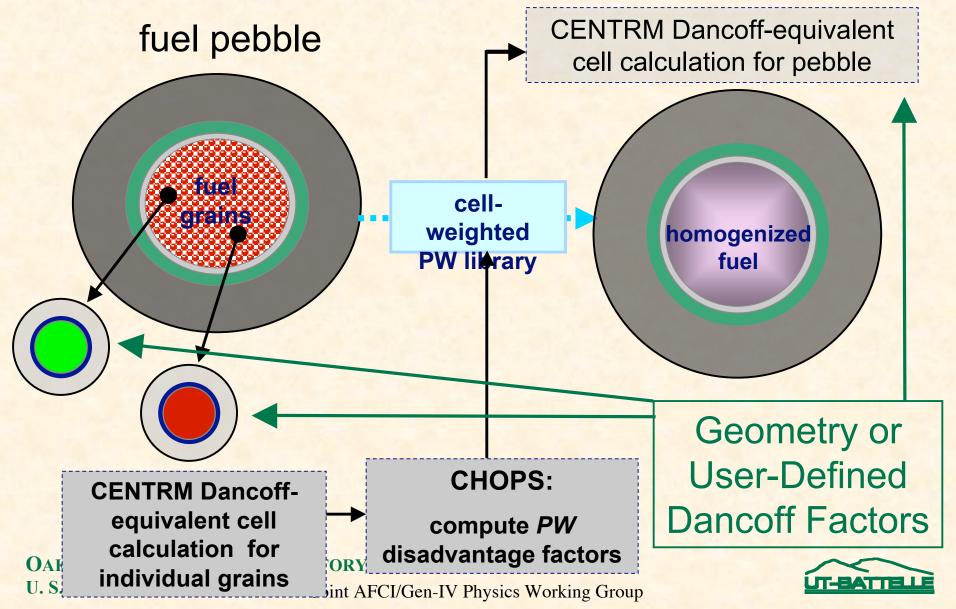
- Cross-section processing
- Criticality safety
- Radiation protection and shielding
- Reactor physics
- SNF/waste characterization (e.g., inventory, decay heat, radiation source and spectra)

s Working Group

Resonance Self-Shielding in SCALE: Accurate solutions need accurate data

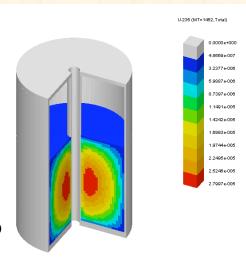
- **BONAMI:** Bondarenko Method for unresolved resonance range
- NITAWL: Nordheim Integral Method for resolved resonance range (ENDF/B-V and earlier)
- CENTRM: Continuous ENergy TRansport Module for resolved resonance range (all libraries: ENDF/B-VI)
 - → Performs 1-D S_n calculation for continuous-energy neutron spectra using with Point-Wise nuclear data
 - → Processes problem-dependent multigroup XS's using Point-Wise nuclear data and flux spectrum

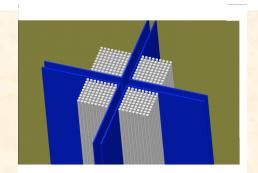
CENTRM Expands Traditional Resolved Resonance Self-Shielding Capabilities


- ENDF/B-VI: Level-level interference effects; Reich-Moore Formalism
- > Spatial Effects: Space-dependent self-shielding
 - → absorber lump in absorber solution
 - + "rim" effects in fuel pins
- Multiple Isotopes: Accounts for resonance overlap effects
- Anisotropic scatter and leakage impacts are included
- Current-weighting: Optional use of current to weight the cross sections
- Inelastic scattering: treatment for a problem-dependent spectra

New and Improved

- Improved elastic removal for structural and moderator materials
- > PW thermal spectra: includes S(a,b) scattering to treat upscatter effects
- New and improved treatment of heterogeneities
 - → Monte Carlo computation of Dancoff factors
 - → Inverse procedure to obtain Dancoff-equivalent unit cell for CENTRM
- Double heterogeneity calculation

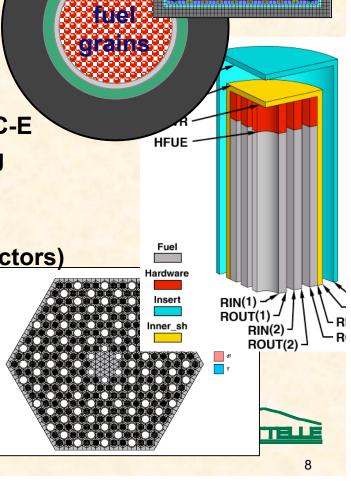



SCALE Double Heterogeneity Method

SCALE Stochastic Transport Methods

- KENO-5 and KENO-VI multi-group Monte Carlo codes
 - → Developed for criticality safety applications
 - Much faster than continuous energy
 - → Now integrated with TRITON for depletion
- Continuous Energy KENO
 - → Currently under development
 - → Provides the rigor of continuous energy Monte Carlo
- MORSE/MONACO Monte Carlo Shielding Code
 - Advanced variance reduction
- > A Single Consistent Geometry
 - → SCALE Generalized Geometry Package (SGGP) being adopted for all ORNL codes
 - **→** Easily switch from NEWT to KENO-VI to CE-KENO

SCALE Deterministic Transport Methods


- > CENTRM
 - + 1-D, source-driven, continuous-energy
 - → For problem-dependent resonance processing
- XSDRNPM
 - + 1-D, WDD, multi-group
 - → Forward/adjoint with a host of uses
- GEMINEWTRN
 - + 2-D arbitrary polygonal mesh, source-driven, C-E
 - + For problem-dependent resonance processing
- > NEWT
 - + 2-D arbitrary polygonal mesh, multi-group
 - → Forward/adjoint solutions for all analyses (reactors)
- > TORT
 - + 3-D orthogonal mesh, multi-group
 - → For all analyses, widely-used in shielding

OAK RIDGE NATIONAL LABORATORY

January 23-24, 2006

U. S. DEPARTMENT OF ENERGY

Joint AFCI/Gen-IV Physics Working 0

ORIGEN-S: Irradiation and decay simulation code

- Irradiation and decay simulation code
- Explicit simulation of 1484 unique nuclides (1946 nuclides in database)
 - + 129 actinides
 - + 1119 fission products
 - → 698 structural activation materials
 - → Other depletion codes typically track a minimum subset of isotopes that are important for reactivity
- Detailed radionuclide compositions
- Decay heat sources (neutron/photon), including energy spectra
- Radio-toxicity
- One of few codes available with comprehensive isotopic characterization of fuel over time scale of seconds to millennia
 - + Accident analyses
 - + Storage and handling
 - + Transportation
 - → Disposal or reprocessing
 - ★ Repository analysis (storage, migration, dose assessment)

History of ORIGEN Code Development

ORIGEN (1973)

ORIGEN-S

SCALE Module (1982)

QA configuration control

Designed with modular data

interface

Active development and support by DOE & NRC

Modern nuclear data

Extensive validation

Comprehensive radiation sources

Graphical Windows Interface

ORIGEN2

User friendly input (1980)

Standalone code in widespread use

Very limited libraries, data hard-

wired

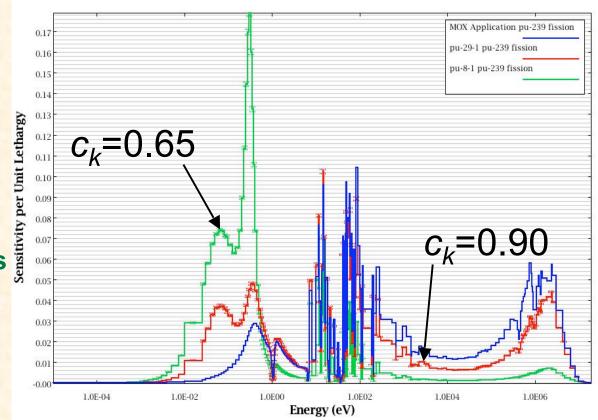
Obsolete nuclear data

No neutron spectra

No code and data development

Not supported at ORNL

No QA activities



TSUNAMI: Tool for S/U Analysis with XSDRN (1-D) and KENO-VI (3-D)

- Determination of critical experiment benchmark applicability to nuclear criticality safety analyses
- The design of critical general physics experiments (GPE)
- experiments (GPE)

 The estimation of computational biases and uncertainties for the determination of safety subcritical margins

²³⁹Pu Fission Sensitivity Profiles: Sensitivity of k_{eff} to cross-section

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY | Joint Al

January 23-24, 2006

A few TSUNAMI Tools within SCALE

TSUNAMI-3D (Tools

for <u>Sensitivity</u> and <u>Un</u>certainty <u>Analysis Methods Implementation –</u> <u>3 Dimensional</u>)

KENO Monte Carlo computes 3-D system sensitivity of k_{eff} and reactivity responses to neutron cross sections for individual:

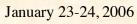
- Nuclide(s)
- Reaction(s)

 $\frac{\Delta_{k}}{k} = \operatorname{Ener}_{2}(\text{ies})$

JavaPENO (Java Plots, Especially Nice Output)

Java ® interactive two-dimensional plotting package

Reads sensitivity data files from TSUNAMI-3D output


TSUNAMI-IP (Tools for

Sensitivity and Uncertainty Analysis Methods Implementation – Indeces and Parameters)

Processes output from TSUNAMI-3D to generate relational parameters and indeces for:

Estimating the degree of similarity between two fissionable material systems

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY
Loint A

Primary physics issues & challenges associated with the LS-VHTR

- Coolant
 - + Voiding
 - What happens to the reactivity if we lose coolant?
 - Does it matter when other changes are accounted for?
 - + Activation
 - How does it change due to activation?
 - How do transmutation products effect refueling and long term storage?
 - + Cost and Handling
 - Thermo-physical properties
 - Neutronic-activation properties during operation
- Refueling
 - → How do we refuel above 350 °C with possibly activated coolant?
 - → Where do we store 2-3 times as many blocks as the VHTR
- Core and Fuel Block Design
 - → Optimization varies with salt choice, and design parameters
 - Enrichment, discharge burnup, number and length of cycles
 - Density and temperature coefficients
 - Refueling considerations

U. S. DEPARTMENT OF ENERGY

Initial Salt Coolants for the LS-VHTR

Alkali Fluorides	ZrF ₄ – salts	BeF ₂ – salts
	LiF-ZrF ₄ (51-49) 509°C NaF-ZrF ₄ 500°C	
LiF-KF 492°C LiF-RbF (44-56) 470°C		
LiF-NaF-KF (46.5-11.5-42) 454°C		LiF-BeF ₂ (67-33) 460°C
LiF-NaF-RbF (42-6-52) 435°C	LiF-NaF-ZrF ₄ (26-37-37) 436°C	LiF-BeF ₂ -ZrF ₄ (64.5-30.5-5) 428°C
	RbF-ZrF ₄ (58-42) 410°C (52-48) 390°C	
	KF-ZrF ₄ (58-42) 390°C	
		NaF-BeF ₂ (57-43) 340°C LiF-NaF-BeF ₂ (31-31-38) 315°C

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY | Ioint AF

January 23-24, 2006

Reactivity insertion from coolant voiding - this is not a LWR

- Rapid loss of coolant w/o temp. change unlikely
 - + Pool-type design @ atmospheric pressure
 - + High boiling point (>1400 °C): 400-700 °C above nominal
 - + Positive CDC (CVR) is politically sensitive
- If coolant heats up, so can graphite and fuel
 - + Power driven transient: DFuel > DCoolant
 - If Doppler is as negative as CVR is positive... no problem
 - → Temperature driven transient: DCoolant > DFuel
 - How much DFuel is required to offset a DCoolant?
 - Safety Ratio ~ FTC / CDC
- Reactor design effects these properties

Estimator for Salt Coolant Physics

Parameters	Value	Units
Cycle Length	1.5	Years
Cycles per Core	2	Number of Batches
Refueling Length	20	Days
Coolant Fraction	7	Volume % of Coolant in the Fuel Block
⁶ Li Content	0.005	Weight % of ⁶ Li in Lithium
Poison Content	0	mg/cm³ Er ₂ O ₃ in the Fuel Compact Matrix

Salt	Eutectic	²³⁵ U Enrichment	Burnup	Coolant Void Ratio	Total Coolant Temp. Coef.	Safety Ratio	Isothermal Temperature Coefficient
	atom%	wt%	MW-d/kgHM	Dollars	Dollars per 100 °C	%	Dollars per 100 °C
LiF_BeF ₂	(67_33)	14.8	158.3	\$0.26	\$0.00	0.6%	-\$0.48
Na F_Be F ₂	(57_43)	16.1	158.3	\$2.59	\$0.07	23.5%	-\$0.22
LiF_Na F_ZrF ₄	(26_37_37)	16.3	158.3	\$2.72	\$0.09	28.3%	-\$0.22
Na F_ZrF ₄	(59.5_40.5)	16.6	158.3	\$3.22	\$0.10	43.1%	-\$0.14
Na F_Rb F_ZrF ₄	(33_23.5_43.5)	17.4	158.3	\$4.25	\$0.13	97.0%	\$0.00

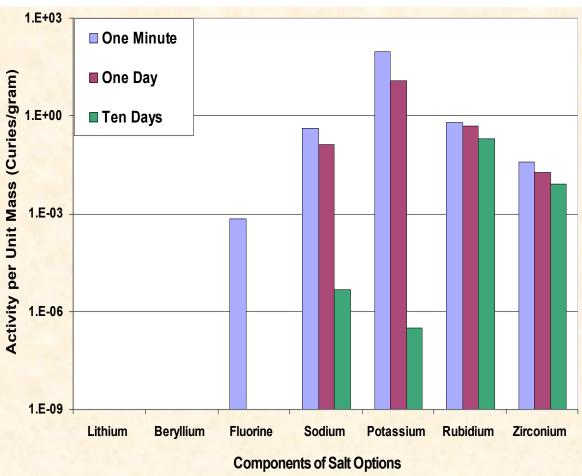
Salt		Coefficients of Reactivity							
	Eutectic		Coolant			Non-Coolant			
		Temperature	Density	Total	Fuel	Graphite	Total		
	atom%		Dollars per 100 °C		Dollars per 100 °C				
LiF_BeF ₂	(67_33)	\$0.00	\$0.01	\$0.00	-\$0.43	-\$0.05	-\$0.48		
Na F_Be F ₂	(57_43)	\$0.00	\$0.06	\$0.07	-\$0.38	\$0.09	-\$0.28		
LiF_NaF_ZrF ₄	(26_37_37)	\$0.00	\$0.08	\$0.09	-\$0.38	\$0.07	-\$0.30		
Na F_ZrF ₄	(59.5_40.5)	\$0.00	\$0.11	\$0.10	-\$0.36	\$0.12	-\$0.24		
Na F_Rb F_ZrF ₄	(33_23.5_43.5)	\$0.00	\$0.15	\$0.13	-\$0.33	\$0.20	-\$0.13		

Estimator for Salt Coolant Physics

Parameters	Value	Units
Cycle Length	1.5	Years
Cycles per Core	2	Number of Batches
Refueling Length	20	Days
Coolant Fraction	7	Volume % of Coolant in the Fuel Block
⁶ Li Content	0.005	Weight % of ⁶ Li in Lithium
Poison Content	5	mg/cm³ Er ₂ O ₃ in the Fuel Compact Matrix

Salt	Eutectic	²³⁵ U Enrichment	Burnup	Coolant Void Ratio	Total Safety Coolant Ratio Temp. Coef.		Isothermal Temperature Coefficient
	atom%	wt%	MW-d/kgHM	Dollars	Dollars per 100 °C	%	Dollars per 100 °C
LiF_BeF ₂	(67_33)	15.1	158.3	-\$0.13	-\$0.09		-\$2.43
Na F_Be F ₂	(57_43)	16.4	158.3	\$2.32	-\$0.01		-\$2.16
LiF_NaF_ZrF ₄	(26_37_37)	16.5	158.3	\$2.78	\$0.04	2.0%	-\$2.13
Na F_ZrF ₄	(59.5_40.5)	16.9	158.3	\$3.30	\$0.06	3.0%	-\$2.04
Na F_Rb F_ZrF ₄	(33_23.5_43.5)	17.7	158.3	\$4.78	\$0.11	5.3%	-\$1.89

Salt		Coefficients of Reactivity							
	Eutectic		Coolant			Non-Coolant			
		Temperature	Density	Total	Fuel	Graphite	Total		
	atom%		Dollars per 100 °C			Dollars per 100 °C			
LiF_BeF ₂	(67_33)	-\$0.09	\$0.00	-\$0.09	-\$0.89	-\$1.47	-\$2.35		
Na F_Be F ₂	(57_43)	-\$0.07	\$0.06	-\$0.01	-\$0.83	-\$1.32	-\$2.15		
LiF_Na F_ZrF ₄	(26_37_37)	-\$0.05	\$0.09	\$0.04	-\$0.84	-\$1.34	-\$2.17		
Na F_ZrF ₄	(59.5_40.5)	-\$0.04	\$0.11	\$0.06	-\$0.82	-\$1.29	-\$2.10		
Na F_Rb F_ZrF ₄	(33_23.5_43.5)	-\$0.04	\$0.15	\$0.11	-\$0.79	-\$1.21	-\$1.99		


Estimator for Salt Coolant Physics

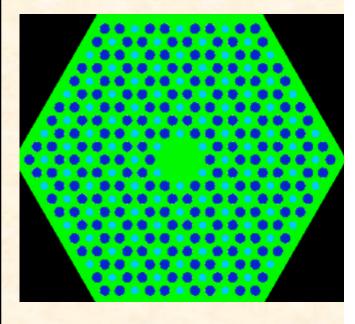
Parameters	Value	Units
Cycle Length	1.5	Years
Cycles per Core	2	Number of Batches
Refueling Length	20	Da ys
Coolant Fraction	15	Volume % of Coolant in the Fuel Block
⁶ Li Content	0.005	Weight % of ⁶ Li in Lithium
Poison Content	5	mg/cm³ Er ₂ O ₃ in the Fuel Compact Matrix

Salt	Eutectic	²³⁵ U Enrichment	Burnup	Coolant Void Ratio	Total Safety Coolant Ratio Temp. Coef.		Isothermal Temperature Coefficient
	atom%	wt%	MW-d/kgHM	Dollars	Dollars per 100 °C	%	Dollars per 100 °C
LiF_BeF ₂	(67_33)	16.2	158.3	-\$0.67	-\$0.19		-\$2.30
Na F_Be F ₂	(57_43)	18.7	158.3	\$4.51	-\$0.04		-\$1.70
LiF_NaF_ZrF ₄	(26_37_37)	19.4	158.3	\$5.72	\$0.08	4.4%	-\$1.68
Na F_ZrF ₄	(59.5_40.5)	20.0	158.3	\$6.84	\$0.12	7.6%	-\$1.46
Na F_Rb F_ZrF ₄	(33_23.5_43.5)	22.0	158.3	\$10.27	\$0.21	16.1%	-\$1.10

Salt		Coefficients of Reactivity								
	Eutectic		Coolant			Non-Coolant				
		Temperature	Density	Total	Fuel	Graphite	Total			
	atom%		Dollars per 100 °C			Dollars per 100 °C				
LiF_BeF ₂	(67_33)	-\$0.19	-\$0.01	-\$0.19	-\$0.88	-\$1.23	-\$2.10			
Na F_Be F ₂	(57_43)	-\$0.15	\$0.06	-\$0.04	-\$0.76	-\$0.91	-\$1.66			
LiF_Na F_ZrF ₄	(26_37_37)	-\$0.10	\$0.17	\$0.08	-\$0.78	-\$0.98	-\$1.76			
Na F_ZrF ₄	(59.5_40.5)	-\$0.10	\$0.11	\$0.12	-\$0.73	-\$0.85	-\$1.58			
Na F_Rb F_ZrF ₄	(33_23.5_43.5)	-\$0.10	\$0.15	\$0.21	-\$0.66	-\$0.66	-\$1.31			

Activation & Transmutation Effect Refueling and Storage Options

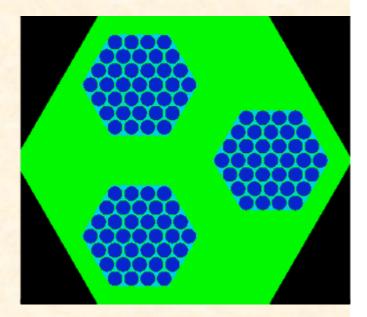
	Activity after Ten Years of Decay									
			All Radia	ation (Ci/g_	_coolant)					
Isotope	Radiation (keV)	Effective T1/2	Lithium	Beryllium	Fluorine	Sodium	Potassium	Rubidium	Zirconium	
Be-10	Electron	1.5 Million Years		2.E-07						
Na-22	Positron	3 Years			•	2.E-09				
CI-36	Electron	300 Thousand Years					1.E-06			
K-40	Gamma (1.5)	1 Billion Years					4.E-08			
Rb-87	Electron	50 Billion Years						2.E-08		
Zr-93	Gamma (0.03)	1.5 Million Years							4.E-07	
Nb-93m	Gamma (0.03)	1.5 Million Years							3.E-07	
Ten Years	(All Radiation)		0.E+00	2.E-07	0.E+00	2.E-09	1.E-06	2.E-08	7.E-07	


Cost and Handling Challenges of Salts

- High freezing points (~350-500 °C)
 - + Challenge refueling and maintenance outages
- High vapor pressure
 - → For some salts
- Beryllium toxicity
 - + If a BeF₂ salt is used
- High cost of lithium enrichment
 - If a LiF salt is used
- Limited experience
 - → With some salts, like those with RbF
- Enrichment penalty due to parasitic capture
 - + ⁶Li, K, Zr

Axial-layering of Er₂O₃ poison can significantly reduce the CVR

Cooled Eigenvalue	1.259	1.250	1.250	1.250
Voided Eigenvalue	1.265	1.240	1.241	1.241
CVR (\$)	\$0.54	-\$0.94	-\$0.83	-\$0.88
1	Reflector	Reflector	Reflector	Reflector
2	Fuel	Poison	Poison	Poison
3	Fuel	Poison	Poison	Fuel
4	Fuel	Fuel	Fuel	Fuel
5	Fuel	Fuel	Fuel	Poison
6	Fuel	Poison	Poison	Poison
7	Fuel	Poison	Fuel	Fuel
8	Fuel	Poison	Poison	Poison
9	Fuel	Fuel	Fuel	Poison
10	Fuel	Fuel	Fuel	Fuel
11	Fuel	Poison	Poison	Fuel
12	Fuel	Poison	Poison	Poison
13	Reflector	Reflector	Reflector	Reflector



January 23-24, 2006

Refueling is the major issue today

- The challenge:
 - + Very hot: > 350 °C
 - Many more fuel blocks than the VHTR
 - 600 MWt VHTR = 1020 blocks
 2400 MWt LS-VHTR = 2650 blocks
 - + Coolant may have a high dose rate
- Solutions:
 - → Pebble Bed very high coolant fraction
 - Robotics already expected with VHTR
 - Larger blocks possibly feasible?
 Assemblies industry approves
- Are assembly designs feasible?
 - Full-length graphite-clad rods, clustered together like an LWR fuel assembly
 - + Passive safety is not a problem
 - Natural circulation of salt
 - Not just graphite conduction
 - More reuse of nuclear-grade graphite
 - + Enrichment/poison grading is required

January 23-24, 2006

The assembly design: similar to the ACR-700, with less uncertainty

This can now be done directly using a TSUNAMI sequence.

	Base Block	Assembly without Enrichment Grading	Assembly with Enrichment Grading	ACR-700
k _{cool}	1.242	1.268	1.260	1.257
Δp	-\$2.05	-\$1.19	-\$1.38	-\$10.30
Δf	\$1.40	\$1.21	\$1.08	\$5.71
Δε	\$0.90	\$0.88	\$1.02	\$5.11
Δη	-\$0.17	-\$0.16	-\$0.69	-\$0.78
CVR	\$0.08	\$0.74	\$0.03	-\$0.26
σ	\$0.01	\$0.01	\$0.01	

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY Loint AF

January 23-24, 2006

Conclusions

> SCALE:

- → Many qualified, easy to use tools for nuclear analysis
- + Rigorous and independent models ideal for benchmarking
- + Has been used for a wide variety of systems:
 - Reactor analysis, experiment design, shielding, crit. safety, etc.
- → Many tools are directly applicable to Gen-IV systems and the **Advanced Fuel Cycle Initiative**

> LS-VHTR:

- **→ Salt-coolant alternative for the VHTR**
- + Coolant voiding:
 - Previously primary issue
 - Has been shown to be of little significance for many salts
- **→** Refueling:
 - Very high temperature with many fuel blocks
 - Very challenging: currently the primary issue
 - Several options have been/are being considered

How can ORNL help Gen-IV and AFCI?

- Multi-group cross sections:
 - + Accurate, problem-dependent MG cross sections
 - + 3-D depletion of doubly-heterogeneous systems
- Isotopic analysis:
 - → Benchmarking current tools (ORIGEN2) w/ SCALE (ORIGEN-S)
 - → ORIGEN-S replacement for ORIGEN2 applications
- System/experiment analyses:
 - → Benchmarking current system analyses with SCALE
 - **♦** S/U analysis of isotopics and reactivity parameters for a system
 - → Applicability assessment of experiments to reactor systems
 - → Bias and uncertainty analysis of experiments
- Anything else?

